ICMSC2018 IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1277 (2019) 012034  doi:10.1088/1742-6596/1277/1/012034

Mathematics analysis of the effect of public health educational
campaigns, screening and therapy on HIV/AIDS transmission

Marsudi’, Trisilowati, A Suryanto and I Darti

Department of Mathematics, Brawijaya University, 65145 Malang, Indonesia

*Corresponding Author : marsudi61(@ub.ac.id

Abstract. In this paper, a deterministic mathematical models are formulated and analyzed to
assess the effect of the public health educational campaigns, screening, and therapy on the
dynamics of HIV/AIDS. The information causes a change in behavior resulting in three
susceptible classes. We calculate the effective reproduction number using the next-generation
matrix method. It has been shown that the disease-free equilibrium point is locally
asymptotically stable when the effective reproduction number is less than unity. Sensitivity
analysis of effective reproduction number with respect to the model parameters were carried
out. The most sensitive parameter on the effective reproduction number is the contact rate of
susceptible to unaware HIV infective followed by the screening rate and the least sensitive
parameter is the progression rate of screened infective to full-blown AIDS. Numerical
simulations and sensitivity analysis are carried out to support the analytical results and to
determine the parameters influencing the dynamics of the disease.

1. Introduction

HIV (Human Immunodeficiency Virus) is a virus that attacks and destroys the human immune system.
The immune system is a body's defense system that naturally fights all kinds of infections and diseases.
AIDS (Acquired Immune Deficiency Syndrome) is a condition in people with HIV who experience
serious illness because their immune system can no longer function effectively against disease. AIDS
sufferers lose so many white blood cells or CD4 + cells (Cluster Designation 4). If CD4 + cells are
available £350 cells/mm3 of blood, the body is not sufficiently protected so that the body loses
endurance and is susceptible to various diseases including tuberculosis, diarrhoea, skin aches, and
others.

Today, mathematical modelling for epidemiological problems has become very important in the
management and control of an epidemic of infectious diseases such as HIV/AIDS. Mathematical
models based on the mechanism of the spread of HIV/AIDS can help medical or scientists understand
and anticipate the spread of the epidemic and evaluate the potential effectiveness of different
approaches to keep the epidemic under control. Tripathi at al [ 1] have examined the effect of screening
on unaware infective in the spread of HIV infection and Safiel et al [2] examined the effects of
screening and treatment on transmission of HIV/AIDS infection in a population. Marsudi et al [3]
present a mathematical model that refers to Safiel et al [2] with the assumption that only screened
infective were treated to investigate the effects of screening and treatment of HIV on the HIV/AIDS
infection dynamics in a population. This model does not consider (neglect) the progression of full
blown AIDS to treated infections because it is assumed that transmission of HIV disease only through
sexual contact (sexually transmitted diseases (STD)) and individuals in the full blown AIDS group
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undergo treatment. Then the model presented by Marsudi et al [4] expand the model in [5] by
examining the impact of condom education, screening and therapy on the spread of HIV infection.
Marsudi et al [6] developed a mathematical model for assess effect of educational campaign on
susceptible and antiretroviral therapy on pre-AIDS infections.

In this paper, the model in [4] is extended by developing susceptible individuals into two groups
which refers to Joshi et al [7], namely groups that get an education and behave AB (Abstinence, Be
faithful) or behave C (Condom) with different levels of infectivity.

2. Mathematical Model

In this section, we introduce a HIV/AIDS model with public health educational campaigns, screening,
and therapy. The total population , denoted by N, was classified into seven disjoint subpopulations,
namely, susceptible individuals (5(7)), educated susceptible and the group following abstinence and
fathful or AB behavior group (S1(7)), educated susceptible and the group using condom or C behavior
group (52 (¢)), unaware infectives (/1 (¢)), aware (screened) infectives (/> (t)), screened infectives
receiving therapy (71(¢)), and full-blown AIDS class (A(?)).

We assumed that transmission rate ( 4 ) proportional to the susceptible, and the ratio between the
number of /i, I» and T and the total population; unaware infective, aware infectives, and treated
infectives can infect susceptible at different rates f,, #, dan f; respectively ( S, < S, < f5,); unaware
infectives can be screened infectives at rate 8; only screened infectives can be therapy infectives at
rate O; unaware infectives, screened infectives and treated infectives move to full-blown AIDS at
different rates o,, o, and o, respectively ( o; <o, <o; ); the AIDS-related dead rate y, the natural
mortality rate 4 and recruitment into susceptible at a rate A. Because of the interactions of individuals

in class S with the education E, a proportion of the susceptibles leave S and move to S and S at the
rate ¢ and «, is @.ES,i=1,2. The public health educational campaigns at S and Sz has the effect of
reducing the infection rate (1-w,)A and (1-y,)A respectively. Parameters v, (0<y, <1,i=12)

measures the efficacy of public health educational campaigns.
The transfer diagram are shown in Figure 1.

Figure 1. Transfer diagram of the model (1)
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The transfer diagram leads to the following system of ordinary differential equations (1).
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where  2=A4h +ﬂ2§\2[lz +@03T, A=0=y)A, 4 =(1-y)A, N=S+S8+S,+1,+L,+T+A4 with  initial

conditions

S(0)=SO,SI(O)zSIO,SZ(O)=SZO,11(0)=110,12(0)=120,T(0)=T0,A(O)=AO. (2)

3. Model Analysis

3.1. Invariant Region

Since the model system of equation (1) monitors changes in the human population, the variables and
the parameters of model are assumed to be positive for all #> 0. The model will be analyzed in a
suitable feasible region where all state variables are positive.

Lemma 1. The solutions of the system (1) are feasible for all #>0 if they enter the invariant region
I.

Proof. Let Q=(S,S,,S,,1,,1,,T,4) e R be a solution of the system (1) with non-negative initial

conditions. The rate of change of the total populations is obtained by adding the equations of the
system (1) to give

dN(t
B A= N~ A< A - N 1), 3)
Using Birkhoff and Rota's theorem [8] on differential inequalities on (3) we obtain
N(t)££+(N(O)—A)e"”. @)
H H

where N(0) represents the initial values of the respective variables. As t > 0in (4), N(¢) < N(0) and

as t > o, N(t)< A which implies that 0 < N(¢) < A Thus, A is an upper bound of N(t) provided
H H H

N(0)< A Hence, all feasible solution of the system (1) enters the region
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r= {Q: (8,885, 11, 1,, T, A) € R] | § > 0,85, > 0,8, > 0,1, 20,1, 20,7 20,42 0,N < ﬁ}. (5)
Y7

A dN (1)

In this case, whenever N(¢)>—, then 7 <0 which means that the population decreases
M t

asymptotically to the carrying capacity and whenever N(t) SA, every solution with initial condition
yri

in . Thus, the region is positively invariant (i.e. solutions remain positive for all times f). Thus, the
system is biologically meaningful and mathematically well-posed in the domain of T". Hence, it is
sufficient to study the dynamics of the basic model in T

3.2. The Disease-free Equilibrium and The Effective Reproductive Number

In order to obtain the disease-free equilibrium point (DFE) of the model system (1) the right-hand
sides of the model equations is set to zero. The disease-free equilibrium point are equalibrium state
solutions where there is no disease (HIV/AIDS). The infective classes ( /,,1,,7,and 4 ) are equal to

zero. Thus, the disease-free equilibrium point of the basic model (1) is given

A EaA EaA
Eoy+Eoy+ " (0Ec +Eoy + 1) ({Ect +Ecy +1)

£S5 S I LT, A*>={ ,o,o,o,o] ©

The local stability of £ was established by using the next generation matrix method on the system
(1). The second of equilibrium point of system (1) is the endemic equilibrium point,
E = (s, Sl**, S;*,Il**, I;*, T, A" that depends on the force of infection A and can be obtained if

1, #0,1, #0,T#0,4#0.
The effective reproduction number R, will be found by using the method of next generation

matrix found in Van den Driessche [9]. Using the notations as in [9] for the system (1), let F; is the
rate of appearance of new infection in a compartment i and V; is the transfer of individuals out of
compartment i by any other means. The effective reproduction number R. is the spectral radius (the
largest eigen value) of the matrix FV-!,

| Bap+hficEo +hfiaBe,  BoutkfBoFo +hfBolo  Beurhpoks+kpokn
) Eoy+Eoy+1 Eoy+Eoy+1 Eo+Eoy+1
F{é?} 0 0 0 0 (7)
J 0 0 0 0
] 0 0 0 0
where k, =(1-y,)and k, =(1-vy,),
O+oi+u 0 0 0
V=|:6V1.(EO):|= -0 o+o,+u 0 0 )
axX; 0 -0 o+u 0
-0 -0, -0y ytu
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Hence, the effective reproduction number of the system (1) is given by

R =p(FV )= afld-y)Ea +(-y,)Ea, + u]
(Ea,+Ea,+u)@+o,+u)
opOl(-y)Ea, +(-y,)Ea, + u]
(Ea,+Ea,+u)(@+o,+u)o+o,+u)
o f00[(0 -y ) Ea, + (1 -y, Ea, + ] .
(Eoy+ Ea, + p)(0+0,+ u)(0 + 0, + p)(o; + 1)

©)

The effective reproduction number R. measures the average number of new infections caused by a
single HIV infected individual in a population where education campaign, screening, and therapy are
used to control strategies are in place.

Following Theorem 2 of [4], we have the following result on the local stability of Eo of system (1).

Theorem 1. The disease-free equilibrium Eo of the system (1) is locally asymptotically stable if
R, <1 and unstable if R, >1.

Proof. The Jacobian matrix of the system (1) is calculated at the DFE is given by

—(Ey+Ea,+1) 0 0 __ Bam B Bt 0
Eoy+Eo, + 11 Eo+Ea,+1 Eog+Eo,+u

Ea, 40 _ kfcEo kpe,Eo; kpcEo 0
Eoy+Ea, + 1 Eoy+Eoy+u Eoy+Eo,+u

Fa, 0 —u __kfcka kbcEa kfeiEo 0
Jo= Eo, +Eo, + 1 Eoy+Eoy,+u  Eo+Eo,+u

0 0 0 —HL oy —LGF peb 0
Eoy+Ea, + 1 Eoy+Ea,+1u Eog+Eo,+u

0 0 O 0 —(0+0o,+ 1) 0 0

0 0 0 0 o —(oy+ 1) 0

0 0 0 a ) g —(r+4)

The eigenvalues of the matrix Jo are obtained by solving the characteristic equation |/II -J 0| =0 and
obtained

ﬂ_(ﬁclp _K) ﬂZC2P chﬂ

0 0
A+ A+ 1y A+ + 1)) -0 A+L 0 | =0 (10)
0 -0 A+M

where k, =1-y,.k, =1-y,,P=kEa, +kEa, + u,Q=FEa,+Ea, + 1, K =0+o0, + 4,
L=6+0,+u,M =0, +p.

From equation (10) there are four root equations with negative values, i.e.
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11 =-0, /12 :/13 =—H,

Ay =~y + 1), (11)
and eigen values obtained from polynomials
fA) =2 +a, +a,A+a, =0 (12)
where
P
a =—%+K+L+M,
P P
a, =P oy POP kv L
ay = ——ﬁlg P - ﬁzcéQPM _BsesO0P

The root values of equation (12) can be solved using the Routh-Hurwitz criteria. According to the

Routh-Hurwitz criteria, the necessary and sufficient condition for all eigenvalues of equation (12) has
anegative real partis a, >0, a; >0,and a,a, —a, >0.

Note that all parameters of the model are non-negative and from R, <1 caused

1> Bie P + Brc, 6P + P5c,06P S ﬂlC1P‘

OK OKL OKLM OK
Then

P P
a, =_%+K+L+M=K(l—&J+L+M > 0.

a3=—ﬂ101PLM—ﬂzczgpM—ﬁ3C359P+KLM:KLM l_ﬁlclP_ﬂZCZHP_ﬁ3c359P
0 Q 0 K OKL OKLM
~KLM(1-R,) >0 jika R,<l.

P P P
a,a, —a; =LM? +L2M+KLZ[I—%)+KM{1-%J+K%[I-&)

OK
—{—KZM(I_M +2KLM l_ﬂlclp +ﬂ3c395P+ ﬂ101P2ﬂ2C20
0K OK 0 2
2 .2p2 2 .2p2 Q
el PL BieiP’M KPiePL Kfie,PM
2 2 Q Q
P P P
>LM* +L2M+KL2(1—ﬂ1QL[1(j+KM2(1_IBIQC;( ]JFKZL(I_ﬂchIl( ]
+K2M(1_M okl 1 BB, Bscs0P  piePBic,6
oK OK 0 2
2c2P2L 2c2P2M Q
l le + = 1Qz > 0.

3.3. Sensitivity Analysis of model parameters
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Sensitivity of each parameter in model is observed with respect to the effective reproduction number
R.. In this way, parameters that are more sensitive to the spread of infection will be known. Initial
disease transmission is directly related to the effective reproduction number. In These indices tell us
how crucial each parameter is to disease transmission and discover parameters that have a high impact
on R. that should be targeted by intervention strategies. The sensitivity index of the effective
reproduction number R. to the parameters in the model was calculated using the approach of [10]. The
normalized forward sensitivity index of R, with respect to parameter p is given by:

R, _ aRe V4
p

= £ 13
» R (13)

e

Using the formula (13) and the parameter sets in Table 1, the sensitivity index of R. with respect to
parameters p are presented in Table 2.

Table 1. Parameters values used for sensitivity analysis

Parameter Description Values (year!)  References
B, =123 Per capita contact rates for susceptible individuals 0.2 Assumed
re 7" with unaware infective, screened infective and 0.005 Assumed
treated individuals 0.001 Assumed
o Screening rate 0.6 Assumed
o i—10.3 Progression rate from unaware infective, screened 0.2 [8]
P 7 infective and therapy infective to full blown AIDS 0.01 [8]
at different rates 0.001 (8]
H Natural death rate 0.01 Assumed
w,,i=12 The efficacy of public health educational measure 0.35;0.45 Assumed
o Assumed
. Average number of sexual partners per unit time 3
c,i=123 . . . : (8]
! for unaware infective, screened infective and 2
g [8]
treated individuals 1 (8]
E Education rate 0.4
Progressi f from class S into class S, 0.075 Assumed
a,,i=12 rogression rate of from class 5 into class 5i 0.045 Assumed
T 0 99 Assumed
o) reatrTlent rate . Assumed
A Recruitment rate 700 Assumed
4 AIDS induced deaih rate 0.9 [8]
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Table 2. Sensitivity indexes of the model parameters with respect to R

Parameter Sensitivity Index

B (¢)) +0.9099
0 -0.8623

E -0.0814
Bs (c3) +0.0811
v, -0.0811
v, -0.0626
a, -0.0591
o, -0.0317
a, -0.0223

H -0.0091
B,(cy) +0.0090
o, -0.0074
o -0.0072
o, -0.0009

Table 1 above consists of parameter values for the sensitivity analysis that is arranged from most
sensitive to the least (in order of magnitude). The specific interpretation of each parameter from Table
1 shows that, the most sensitive parameter is the contact rate of susceptible to unaware HIV infective
p, followed by the screening rate €. Other important parameters include the education rate £ and

followed by the contact rate of susceptible with therapy infective f,. Followed by the efficacy rate of
education ¥, and than followed by the efficacy rate of education y,. The sensitivity indexes for the
other parameters are very small (- 0.0009 - 0.0090). the least sensitive parameter is the progression
rate of screened infective to full-blown AIDS class o, . The sensitivity index of R. with respect to the
contact rate of susceptible to unaware HIV infective (f,) is +0.9099 that means, increasing (or
decreasing) the parameter value 5, by 10% keeping other parameters constant, increases (or decreases)
R. by 9.099%, The sensitivity index of R. with respect to the contact rate of susceptible to unaware
HIV infective (f,) is +0.7870 that means, increasing (or decreasing) the parameter value 5, by 10%
keeping other parameters constant, increases (or decreases) R. by 7.87%. The sensitivity index of R,
with respect to the screening rate (&) is -0.8623 that means, increasing (or decreasing) the parameter

value the screening rate @ by 10% keeping other parameters constant, decreases (or increases) R. by
8.623%.

4. Numerical Simulations

Simulated models (2) are carried out using the set of parameters values given in Table 1. Some
parameter values were obtained from [2] and assumed. We simulate the model system by using ODE
solver coded in Matlab program language by using the following initial conditions:

S(0)=20,00000Q S,(0) =5,00000Q S,(0) =5000Q 7,(0)=20000Q ,(0) =2500Q 7(0) =5,000 and A4(0) =2,000 (14)

By using parameter values shown in Table 1 and equation (9) is obtained the effective
reproduction numbers of the model system (2) isR, =0.7110.
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4.1. Variation of a population under different screening rates

Figure 2 shows the variation of population of unaware infective, aware infective, treated and AIDS
population for different values of €. It is seen that as the screening rate (6 ) increases, the number of
screened and treated infectives increases rapidly after 5 years then reaches its equilibrium (Figure 2(b)
and 2(c)). Figure 2(a) and 2(d) shows that the number of unaware infectives and the number of full-
blown AIDS population initially decreases as € increases and then starts to decreases reaches its
equilibrium. Thus, the screening of unaware infective have the effect of reducing the transmission of
HIV infections.

4 x107 (a) 5 2107 (b)
5 g=0.1 [ H=0.1 fo
H=0.6 H=0.6
. 6=0.8 L = H=0.8 =
=2 =
” 1
(8] o
o 5 10 o 5 10
Time (years) Time (years)
i Ll (<) 15 x10° (d)
H=0.1
H=0.6
- 10 PR L - 10
= =
5 5
__f.
o o
o 5 10 o 5 10
Time (years) Time (years)

Figure 2. Variation of population for different values of 8

4.2. Variation of a population under different therapy rates

Figure 3 shows the variation of a population of infective individuals for different values of therapy
rate (0). We noted that in Figure 3(a), (b) and (d) the number of unaware, screened infectives and
full-blown AIDS patient decreases when the value of § increases. While, the number of treated
population increases as § increases (Figure 3(c)). This means the spread of HIV infection can only be
reduced but not eliminated from the population. Thus, therapy programs at screened infective have the
effect of reducing the transmission of HIV infections.

g x10% (a) = 10% (b)
(53
E'“.‘._ 4
2
o
o] o]
Time (years) Time (yvears)
& = 10% (c) it = 107
£ s
4 ]
o 5 10 o
Time (vears) Time (vears)

Figure 3. Variation of population for different values of o
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4.3. Variation of a population under public health educational campaigns rate
Figure 4 shows the variation of a population of infective population for different values of the public
health education campaign (E). It is seen that as the education campaign (£) increases, the number of

unaware infective, screened infective, treated infectives, and full-blown AIDS class initially decreases
as E increases and then after about 6 years starts to increases reaches its equilibrium. This means the
spread of HIV infection can only be reduced but not eliminated from the population. Thus, the public
health educational campaigns programs at susceptible have the effect of reducing the transmission of
HIV infections.

A {a) 105 (b}
10 = Ao 4 = 10
3
= = =2
1
o o
o o
Time (years) Time (years)
& (<) -~ 10° (d)
g =10 15 S0
& E=0.1
E=0.4
. E=0.8 __ e
= 4 =
- S
o o
o 5 10 o
Time (years) Time (years)

Figure 4. Variation of population for different values of £

5. Conclusion

We presented a deterministic model for assessing the effect of the education campaign on
susceptible, screening on unaware infectives, and therapy on aware infectives in the spread of HIV
in the population. The analysis shows that the education of susceptible, the screening of unaware
HIV infective and therapy of screened HIV infective have the effect of reducing the transmission of
the disease. A sensitivity analysis shows that the contact rate of susceptible to unaware HIV

infective is the most sensitive parameter on the effective reproduction number R, followed by the

screening rate and the least sensitive parameter is the progression rate of screened infective to full-
blown AIDS. It is observed that when education campaign, the screened infective, and therapy
infective participate in the transmission of the infection, the AIDS population is significantly
reduced in comparison to the case where there is no education campaign, screening and therapy.
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